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Montréal (Québec) Canada, H3T 2A7

pierre.hansen@gerad.ca

Leo Liberti

LIX
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Abstract

Heuristics are widely applied to modularity maximization models for the identification of communities
in complex networks. We present an approach to be applied as a post-processing to heuristic methods in
order to improve their performances. Starting from a given partition, we test with an exact algorithm for
bipartitioning if it is worthwhile to split some communities or to merge two of them. A combination of
merge and split actions is also performed. Computational experiments show that the proposed approach
is effective in improving heuristic results.

Key Words: clustering, bipartition, network, graph, community, modularity, heuristic, exact algo-
rithm.

Résumé

Les heuristiques sont largement employeés pour maximiser approximativement la modularité afin
d’identifier des communauteés dans des reseaux complexes. Nous présentons une approche qui peut être
appliquée comme un “post-processing” à des méthodes heuristiques afin d’améliorer leur performances.
Etant donneé une partition, nous vérifions avec un algorithme exact de bipartitionemment s’il est utile
de diviser des communauteés ou de fusioner deux communauteés. Une combinaison des actions de fusion
et bipartition est aussi effectuée. Des expériences montrent que l’approche proposée est efficace dans
l’amélioration de résultats heuristiques.

Mots clés : clustering, bipartition, rseau, graphe, communaut, modularit, heuristique, algorithme
exact.
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1 Introduction

The identification of communities in complex networks has become in recent years a very active research

domain [1, 2] because of the common representation of complex real-world systems arising in a variety

of fields as networks. One then aims to find communities, or clusters, of entities grouped on the basis
of some relationship holding among them. Telecommunication networks such as the World Wide Web,

biological networks representing interactions between proteins and social networks representing collaborations

or conflicts between people or countries are some examples of real-life applications.

Intuitively, one would say that a set of vertices of a network form a community if edges joining two vertices

of that set are frequent and edges joining a vertex of that set to a vertex outside are not. This concept has

been refined in many ways, leading to the introduction of concepts of modularity [3], modularity density [4],

min-max cut [5], normalized cut [6] and others.
A very successful class of methods to detect communities in networks is based on the concept of modularity.

Modularity of a community is defined in [3] as the difference between the fraction of edges it contains and

the expected fraction of edges it would contain if they were placed at random, keeping the same degree

distribution. Then, modularity of a partition of a network into communities is defined as the sum of the

modularities of these communities. Modularity expresses not only that a community contains a large fraction
of the edges, but also that it contains a larger fraction of the edges than would be expected. Large values of

modularity correspond to a clear partition of a network. One therefore seeks to maximize modularity. See

e.g. [2, 7, 8] for a further discussion of the strengths and weaknesses of the modularity function.

Numerous heuristics and a few algorithms have been proposed to find near optimal or optimal partitions

respectively for the maximum modularity criterion. Heuristics are either partitioning methods or hierarchical

divisive or agglomerative ones. Partitioning heuristics are based on simulated annealing [9, 10, 11], mean field

annealing [12], genetic search [13], extremal optimization [14], spectral clustering [15], linear programming
followed by randomized rounding [16], dynamical clustering [17], multilevel partitioning [18], contraction-

dilation [19], quantum mechanics [20] and several other approaches [21, 22, 23, 24, 25, 26]. Agglomerative

hierarchical clustering [27, 28, 29, 30, 21] proceeds from an initial partitions into communities each containing

a single vertex to merging sequentially vertices or sets of vertices corresponding to communities. In [31] this
approach is combined with a vertex mover routine which improves the partitions by changing the community

of a vertex to that of one of its adjacent vertices. Divisive hierarchical clustering proceeds from an initial

trivial partition in one community containing all vertices and sequentially selects a community and proceeds

to its bipartitioning. Divisive heuristics are much less frequent than agglomerative ones. The best known

of them is Newman’s spectral heuristic [15], which uses the signs of the first eigenvector of the modularity
matrix to perform successive bipartitions. In a companion paper [32], we propose a hierarchical divisive

heuristic which is locally optimal, i.e., in which all successive bipartitions are done in an optimal way.

These heuristics are able to solve large instances with up to thousand or tens of thousands of vertices

(and sometimes over a million) and therefore are often preferred to exact algorithms, even though they do

not have a guarantee of optimality. Only a few papers propose exact algorithms for maximizing modularity.

The first one, due to Xu et al. [33], uses quadratic mixed-integer programming with a convex relaxation.
Networks with up to 104 vertices were addressed successfully. Brandes et al. [34] have shown that modularity

maximization si NP-hard, even if there are only two communities. In addition, they propose to express

modularity maximization as a clique partitioning problem. They maximize modularity of networks with up

to 105 vertices. Their algorithm is close to that one of Grötschel and Wakabayashi [35, 36]. Aloise et al. [37]

apply column generation to modularity maximization and solve exactly instances with up to 512 vertices.

Given a partition found by a heuristic, one can apply another heuristic or an exact algorithm to the

subnetworks induced by the communities found. This will eventually lead to a new, better, partition. More-
over, this refinement can be based on splitting a community or merging a pair of communities. In the

spirit of matheuristics, an exact algorithm for bipartition is applied in our approach first to the communities

considered one at a time, then merging pairs of communities and applying again the bipartition algorithm.

We employ our approach as post-processing of some known heuristics for modularity maximization, ob-

taining improved solutions and, for some datasets, the optimal partition.
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The paper is organized as follows. In the next section, the proposed approach to improve heuristic

results for modularity maximization is described, presenting in particular an exact algorithm for bipartition.

Section 3 presents the results of computational experiments carried out applying the proposed approach as
post-processing to three of the best heuristics available for modularity maximization of networks, i.e., the

agglomerative hierarchical heuristic of Clauset et al. [28], the partitioning heuristic of Noack and Rotta [38]

and the multistep greedy with vertex move heuristic of Schuetz and Caflisch [31]. We also apply this approach

to the locally optimal divisive hierarchical heuristic of [32]. Conclusions are given in Section 4.

2 Improving heuristics for modularity maximization

2.1 An exact algorithm for bipartition

We present in this section an exact algorithm for modularity maximizing bipartition of networks. Although

it can be applied in full generality to any graph, we specifically apply it in the role of post-processing step to

heuristics for the identification of communities in networks.

We model this bipartitioning problem using binary variables to identify to which community each vertex

and each edge belongs. In this respect, our model is similar to that of Xu et al. [33]. These authors proposed

in 2007 [33] a model for modularity maximization of networks which leads to an optimal partition generally
with more than two communities. Their model is a mixed-integer quadratic program with a convex relaxation.

Let G = (V,E) be a graph, or network, with vertex set V of cardinality n and edge set E of of cardinality

m. First, we recall the definition of modularity Q as a sum over communities of their modularities [3]:

Q =
∑

s

[as − es],

where as is the fraction of all edges that lie within community s, and es is the expected value of the same

quantity in a graph in which the vertices have the same degrees but edges are placed at random. Modularity

can then be written equivalently as:

Q =
∑

s

[

ms

m
−

(

ds

2m

)2
]

, (1)

where ms denotes the number of edges in community s, i.e., which belong to the subgraph induced by the

vertex set Vs of that community, and ds denotes the sum of degrees ki of the vertices of community s. Since
we aim to find a bipartition, only two sub-modules of the original community have to be considered, i.e.

s ∈ {1, 2}. We can express the sum of degrees d2 of vertices belonging to the second community as a function

of the sum of degrees d1 of vertices belonging to the first one:

d2 = dt − d1, (2)

where dt is the sum of degrees in the community to be bipartitioned. It is equal to 2m at the first iteration.

We rewrite (1) for s ∈ {1, 2}, using (2):

Q =
m1 +m2

m
−

d21
4m2

−
d22
4m2

=

=
m1 +m2

m
−

d21
4m2

−
d2t + d21 − 2dtd1

4m2
=

=
m1 +m2

m
−

d21
2m2

−
d2t
4m2

+
dtd1

2m2
.

(3)

We then introduce binary variables Xr1, Xr2 and Yi1 to model assignment of vertices and edges to the

two communities of the bipartition. These variables are defined as follows:

Xrs =

{

1 if edge r belongs to community s

0 otherwise
(4)
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for r = 1, 2, . . .m and s = 1, 2 and

Yi1 =

{

1 if vertex i belongs to community 1
0 otherwise, i.e., vertex i belongs to community 2

(5)

for i = 1, 2, . . . n.

We impose that any edge r = {vi, vj} with end vertices indiced by i and j can only belong to community s

if both of its end vertices belong also to that community:

Xr1 ≤ Yi1 ∀r = {vi, vj} ∈ E

Xr1 ≤ Yj1 ∀r = {vi, vj} ∈ E
(6)

and
Xr2 ≤ 1− Yi1 ∀r = {vi, vj} ∈ E

Xr2 ≤ 1− Yj1 ∀r = {vi, vj} ∈ E .
(7)

Furthermore, we exploit the following expressions in terms of variables Xr1, Xr2, r = 1, 2, . . .m, and Yi1,

i = 1, 2, . . . n, for the number of edges of each of the two communities and the sum of vertex degrees of the

first one:
ms =

∑

r

Xrs ∀s ∈ {1, 2}, (8)

d1 =
∑

i∈V1

kiYi1. (9)

Only the sum of vertex degrees of the first community is exploited, because of expression (2).

We then have the following integrality constraints on the variables:

Xrs ∈ {0, 1} ∀r = {vi, vj} ∈ E, ∀s ∈ {1, 2}
Yi1 ∈ {0, 1} ∀i ∈ {1, . . . , n}
m1,m2, d1 ∈ N

+.

(10)

Maximizing modularity (3) subject to constraints (6)-(7) and (8)-(9) and replacing the integrality con-
straints (10) by range constraints gives a quadratic mixed-integer program with a convex relaxation which

can be solved by recent versions of CPLEX [39]. This model has 2m+ n+3 variables and 4m+ 3 constraints.

For sparse networks, as is the case in many applications, these sizes are reasonable.

2.2 Improving a partition by merging and splitting

The proposed post-processing heuristic aims at improving the modularity of a given partition obtained with
some heuristic. A new partition is obtained in a sequence of steps, which act on the current communities by

splitting and merging.

First, we split each community of the original partition into two sub-communities by applying the exact

algorithm for bipartition described in Subsection 2.1. We then check if the modularity value corresponding to

the obtained bipartition is higher than the one of the original community. This comparison is justified by the
definition of modularity of a partition as sum of modularities of its communities. If the new modularity value

is higher than that one of the original community, this community is replaced by the two new communities.

Otherwise the two obtained communities are discarded and the original one is kept. When all the original

communities have been checked, a new partition is obtained with a higher modularity than before if at least
one bipartition has been accepted.

Second, we merge provisionally pairs of communities and check if this induces an increased value for

modularity. For each pair of communities, we consider the new community containing all vertices of this

pair and check if the larger community has a modularity value higher than the sum of the modularities of

the two original communities. If this is the case, the new large community is kept in place of the other two.
Otherwise, if merge is not beneficial, we try to split the merged community using again the exact algorithm

presented in Subsection 2.1. As before, the two communities resulting from the bipartition are kept if the sum
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of their modularities is higher than the modularity of the splitted community. Obviously, pairs of clusters to

be merged can be selected according to different criteria. We compute the number of edges joining pairs of

clusters, that is the number of edges joining vertices belonging to the first cluster of the pair with vertices
belonging to the second cluster. Then, the pairs are sorted by decreasing number of joining links. This

gives the list of pairs of clusters to be considered for merging. In this way, we first attempt to improve the

current partition by merging clusters which are more strongly connected than others, so that a merging can

be expected to be beneficial.

A sketch of our algorithm is given in Alg. 1.

Algorithm 1

1: /* ncl = number of communities of the partition found by a heuristic */
2: /* CLi = community of the partition found by a heuristic, ∀i = {1, . . . , ncl} */

Require: V,E, ncl, CLi ∀i = {1, . . . , ncl}
3: nclsplit ← 0
4: for all i ≤ ncl do

5: split CLi into CL1, CL2 using algorithm in Subsection 2.1
6: if Q(CL1) +Q(CL2) > Q(CLi) then
7: replace CLi with CL1, CL2

8: else

9: keep CLi

10: end if

11: nclsplit ← number of communities of the new partition
12: end for

13: nclmerge+split ← nclsplit
14: for all i ≤ nclsplit do

15: listcl← list of pairs of communities (CLj , CLk), j, k ∈ {1, . . . , nclsplit}
16: while listcl 6= ∅ do
17: select a pair of communities CLj , CLk from listcl

18: merge CLj and CLk into CLm

19: if Q(CLm) > Q(CLj) +Q(CLk) then
20: replace CLj , CLk with CLm = CLj ∪ CLk

21: else

22: split CLm into CLm1, CLm2

23: if Q(CLm1) +Q(CLm2) > Q(CLm) then
24: replace CLm with CLm1, CLm2

25: else

26: keep CLm

27: end if

28: end if

29: update listcl

30: end while

31: end for

32: nclmerge+split ← number of communities of the new partition

33: compute modularity Q =
∑i=nclmerge+split

i=1 Q(CLi)
34: return final partition, Q

3 Computational results

We apply our approach as a post-processing heuristic to three known heuristics due to Clauset, Newman

and Moore [28], Noack and Rotta [38] and Schuetz and Caflisch [31]. We also apply it to the locally optimal

divisive hierarchical heuristic of [32]. Clauset et al. [28] proposed in 2004 an efficient implementation of an
agglomerative hierarchical scheme, that for sparse networks has a very low complexity and is considerably

faster than previously proposed methods. Noack and Rotta [38] presented in 2008 a comparison of heuristics
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for modularity maximization and proposed a heuristic based on a single-step coarsening with a multi-level

refinement, which is competitive with other methods in the literature. Schuetz and Caflisch [31] introduced

in 2008 a multistep extension of the greedy heuristic and combined it with a vertex-by-vertex refinement
procedure, called vertex mover. Their main idea is to promote simultaneous merging of several pairs of

communities. Moreover, the vertex mover acts as an efficient ascent heuristic, used repetitively. The present

authors proposed in 2010 a hierarchical divisive heuristic where bipartitions are done exactly using the model

of Section 2.

Our computational results have been obtained on some datasets that are often used to evaluate heuristics
and algorithms for identification of communities in networks. These datasets correspond to various real-life

applications: a social network of dolphins described by Lusseau [40], a network describing interactions among

the characters of Hugo’s novel Les Misérables [41], a network dealing with protein-protein interactions [42], a

network recording co-purchasing of political books on Amazon.com [43], a network representing the schedule

of games between American college football teams in the Fall of 2000 [44], a network dealing with connections
between US airports [45], a network describing electronic circuits [46], a network representing e-mail inter-

changes between members of a university [47], a network giving the topology of the Western States Power

Grid of the United States [48] and a network of authors collaborations [45].

In our implementation, the quadratic mixed-integer program with a convex relaxation which modelizes

the modularity maximizing bipartition problem is solved by using CPLEX [39]. The number of nodes in its
Branch and Bound tree is limited to 40000.

In Table 1 we report, for each dataset, the values of modularity computed by the four considered heuristics

and by the proposed approach when applied as post-processing to the partitions obtained with these heuristics,

together with the optimal value of modularity, when available in the literature. The number of vertices n

and the number of edges m of the datasets are also reported.

It appears that:

• the best result obtained with the four heuristics and our proposed post-processing approach is optimal

4 cases out of the 8 for which an optimal value is known.

• However, for the four cases in which the optimal solution could not be found, the error between
the optimal value and the best value found by one of the heuristics appears to be very moderate,

i.e., 0.00011 or 0.021% for p53 protein and 0.000016 or 0.043% for usair97, 0.000022 or 0.026% for

netscience main and 0.00265 or 0.32% for s838.

• The proposed approach is very efficient in the sense that it improved the values given by the heuristics
in all cases for all of them, except for les miserables for which the optimal solution was already

obtained by Noack and Rotta’s and Schuetz and Caflisch’s heuristics.

• After post-processing, the Noack and Rotta’s heuristic gives the best results in 8 cases over 11, the

Schuetz and Caflish’s heuristic in 4 cases over 11, which are a subset of the 8 cases solved by the
Noack and Rotta’s heuristic, the Clauset et al.’s heuristic found the best solution in 2 cases out of 11,

i.e., political books (for which it was also obtained by the Noack and Rotta’s and the Schuetz and

Caflish’s heuristics) and erdos02. Finally, the best solution after post-processing was found by the

locally optimal divisive heuristic in 2 cases, i.e., s838 and power.

• The average value of modularity for the Clauset et al.’s heuristic over 11 problems is 0.616975 before

post-processing and 0.634178 after post-processing, the average improvement is 0.0172027 and the cor-

responding percentage of increase in modularity is 2.78824%. The average value of modularity for the

Noack and Rotta’s heuristic over 11 problems is 0.640711 before post-processing and 0.643135 after

post-processing, the average improvement is 0.0024245 and the corresponding percentage of increase in
modularity is 0.378415%. The average value of modularity for the Schuetz and Caflisch’s heuristic over

11 problems is 0.640084 before post-processing and 0.643521 after post-processing, the average improve-

ment is 0.0034373 and the corresponding percentage of increase in modularity is 0.537004%. Average

value of modularity for the Cafieri et al.’s heuristic over 9 problems is 0.632559 before post-processing
and 0.633466 after post-processing, the average improvement is 0.000906667 and the corresponding

percentage of increase in modularity is 0.143333%.
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Table 1: Results on real-world datasets: comparison between the modularity values found by heuristics
and by the proposed approach applied as post-processing. QCNM , QNR, QSC and QCHL are modularities
computed using heuristics by Clauset et al. [28], Noack and Rotta [38], Schuetz and Caflisch [31] and Cafieri
et al. [32]. Q′, Q′′, Q′′′, Qiv are modularities computed applying the proposed approach to the partitions
obtained by these heuristics. Qopt are the optimal modularity values as reported in the literature. n and m

are the number of vertices and the number of edges of the networks.

dataset n m QCNM Q′ QNR Q′′ QSC Q′′′ QCHL Qiv Qopt

dolphin 62 159 0.49549 0.52011 0.52377 0.52852 0.52456 0.52852 0.52646 0.52680 0.52852

les miserables 77 254 0.50060 0.52438 0.56001 0.56001 0.56001 0.56001 0.54676 0.55351 0.56001

p53 protein 104 226 0.52052 0.52621 0.53216 0.53502 0.51825 0.52910 0.53000 0.53004 0.53513

political books 105 441 0.50197 0.52724 0.52694 0.52724 0.52694 0.52724 0.52629 0.52678 0.52724

football 115 613 0.57728 0.59121 0.60028 0.60457 0.60316 0.60457 0.60091 0.60112 0.60457

usair97 332 2126 0.32039 0.36221 0.36577 0.36808 0.36374 0.36458 0.35959 0.35975 0.3682

netscience main 379 914 0.83829 0.84551 0.84745 0.84842 0.84567 0.84754 0.84702 0.84703 0.8486

s838 512 819 0.80556 0.80666 0.81624 0.81656 0.81274 0.81364 0.81663 0.81675 0.8194

email 1133 5452 0.51169 0.54042 0.57740 0.57776 0.57425 0.57567 – – –

power 4941 6594 0.93402 0.93658 0.93854 0.93873 0.93679 0.93752 0.93937 0.93941 –

erdos02 6927 11850 0.78092 0.79543 0.75926 0.76958 0.77481 0.78941 – – –

The approach proposed in the present paper is based on two main steps, which are applied sequentially.
We call these steps split and merge+split for short. In order to evaluate the impact of the two steps,

we report in Tables 2 and 3 the modularity values obtained applying split and merge+split starting from

Clauset et al.’s (CNM) solution and Noack-Rotta’s (NR) solution for the first table and starting from Schuetz

and Caflisch’s (SC) solution and from Cafieri et al.’s (CHL) solution for the second table respectively. Note
that modularity values for merge+split are the final results provided by our moves, already shown in Table 1.

These results show that the splitting step provides in most cases a significant improvement of the original

partition. Examples are given by dolphin, political books, football, usair97, netscience main and

email datasets (that is, 6 cases out of 11) for CNM and by p53 protein dataset for SC, where an improvement

on the second decimal digit of modularity value is obtained. Furthermore, the splitting step provides the
optimal solution of political books dataset for NR and of political books and football datasets for SC.

By contrast, this step does not provide for some instances a better partition than the original one, leading

to an unchanged modularity value. Examples are given by erdos02 dataset for CNM , by p53 protein,

usair97, s838 and erdos02 datasets for NR, and by usair97 and erdos02 datasets for SC. The splitting
step never improves solutions found by the fourth heuristic CHL, as expected being the splitting step of

that divisive heuristic already performed by using the exact algorithm of Section 2.1. This behavior shows

the importance of a combined use of both splitting and merging steps in the proposed approach to obtain

eventually a new, better, partition.

Table 2: Modularity values corresponding to the partition found by the heuristic and by our approach after
the splitting step only (Q′

split, Q
′′

split) and after the successive application of the merging and splitting step
(Q′

merge+split , Q
′′

merge+split) for Clauset et al.’s heuristic (CNM) and Noack and Rotta’s heuristic (NR).

dataset CNM NR

QCNM Q′

split
Q′

merge+split
QNR Q′′

split
Q′′

merge+split

dolphin 0.49549 0.51693 0.52011 0.52377 0.52773 0.52852

les miserables 0.50060 0.50732 0.54039 0.56001 0.56001 0.56001

p53 protein 0.52052 0.52518 0.52621 0.53216 0.53216 0.53502

political books 0.50197 0.52708 0.52724 0.52694 0.52724 0.52724

football 0.57728 0.58232 0.59121 0.60028 0.60237 0.60457

usair97 0.32039 0.36157 0.36221 0.36577 0.36577 0.36808

netscience main 0.83829 0.84537 0.84551 0.84745 0.84828 0.84842

s838 0.80556 0.80639 0.80666 0.81624 0.81624 0.81656

email 0.51169 0.53939 0.54042 0.57740 0.57741 0.57776

power 0.93402 0.93605 0.93658 0.93854 0.93867 0.93873

erdos02 0.78092 0.78092 0.79543 0.75926 0.75926 0.76958

Table 4 shows computing time required by our post-processing strategy applied to the four considered
heuristics to get an improved solution. Results have been obtained on a 2.4 GHz Intel Xeon CPU of a



Les Cahiers du GERAD G–2011–14 7

Table 3: Modularity values corresponding to the partition found by the heuristic and by our approach after
the splitting step only (Q′′′

split, Q
iv
split) and after the successive application of the merging and splitting step

(Q′′′

merge+split, Q
iv
merge+split) for Schuetz and Caflisch’s heuristic (SC) and Cafieri et al.’s heuristic (CHL).

dataset SC CHL

QSC Q′′′

split
Q′′′

merge+split
QCHL Qiv

split
Qiv

merge+split

dolphin 0.52456 0.52852 0.52852 0.52646 0.52646 0.52680

les miserables 0.56001 0.56001 0.56001 0.54676 0.54676 0.55351

p53 protein 0.51825 0.52663 0.52910 0.53000 0.53000 0.53004

political books 0.52693 0.52724 0.52724 0.52629 0.52629 0.52678

football 0.60316 0.60457 0.60457 0.60091 0.60091 0.60112

usair97 0.36374 0.36374 0.36458 0.35959 0.35959 0.35975

netscience main 0.84566 0.84587 0.84754 0.84702 0.84702 0.84703

s838 0.81274 0.81338 0.81364 0.81663 0.81663 0.81675

email 0.57425 0.57557 0.57567 – – –

power 0.93678 0.93718 0.93752 0.93937 0.93937 0.93941

erdos02 0.77481 0.77481 0.78941 – – –

computer with 8GB RAM shared by three other similar CPU running Linux. As expected, times are roughly

increasing with network dimension, even though they depend mostly on the quality of the initial partition

and the cardinality of its communities to be handled. Times are in general reasonably moderate, and very

short times are spent on most of the tested networks. The optimal partition is found in less than 1 second for
dolphin dataset and in less than 7 seconds for football dataset starting from NR and SC solutions and in

less than 12, 17 and 20 seconds respectively for political books starting from NR, SC and CNM solutions.

Table 4: Computing time (seconds) required by the proposed approach applied as post-processing to Clauset
at al.’s heuristic (timeCNM), Noack and Rotta’s heuristic (timeNR), Schuetz and Caflisch’s heuristic (timeSC)
and Cafieri et al.’s heuristic (timeCHL). Solutions have been obtained on a 2.4 GHz Intel Xeon CPU of a
computer with 8GB RAM shared by three other similar CPU running Linux.

dataset timeCNM timeNR timeSC timeCHL

dolphin 0.89 0.33 0.80 0.47

les miserables 0.62 1.15 1.33 0.51

p53 protein 0.27 2.12 0.29 0.48

political books 11.15 16.62 19.18 9.50

football 1.50 6.10 5.21 1.73

usair97 7427.90 2972.71 4496.67 4726.78

netscience main 2.76 3.98 2.06 1.65

s838 1.88 3.35 1.58 2.78

email 43541.22 2831.19 13222.12 –

power 62.12 46.91 66.33 48.80

erdos02 63156.65 13902.96 892408.05 –

4 Conclusion

This paper describes the application of an approach based on an exact algorithm for bipartitioning a network,

in the framework of split and merge movements on communities of a network partition. Computational

results obtained on a set of examples from the literature, applying the proposed approach as post-processing
to four heuristics for modularity maximization of networks, show the impact of an exact approach on the

improvement of heuristic results.

The presented approach can be easily applied in full generality to any modularity maximization based

heuristic to improve the quality of the partition provided by the heuristic.

It has been succesfully exploited to develop a hierarchical divisive clustering heuristic which is locally
optimal [32] and may be further developed including the described moves directly in a local search heuristic.
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